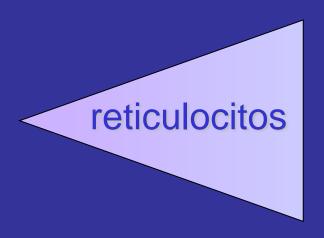
XIV JORNADAS DE BIOQUIMICA CLINICA II JORNADAS BIOQUIMICAS DEL CENTRO DEL PAIS

Anemias microcíticas hereditarias Talasemias fisiopatogenia y diagnóstico

TALASEMIAS


ALGO MAS QUE UNA ANEMIA MICROCITICA

9 de octubre de 2014

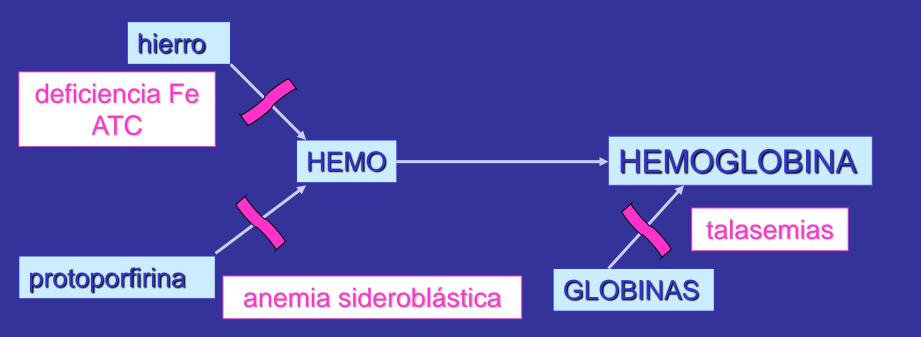
INTRODUCCION

CLASIFICACION

MORFOLÓGICA

Macrocítica

Normocítica-normocrómica


hierro

Microcítica-hipocrómica

ANEMIA: MICROCÍTICA-HIPOCRÓMICA

ALTERACION DE LA HEMOGLOBINOGENESIS

ATC: anemia por trastornos crónicos

Más del 30 % de personas en el mundo tiene anemia

El 50 % de mujeres y niños en el mundo tienen deficiencia de hierro Las talasemias constituyen el desorden genético más común del mundo

ANEMIAS HEMOLITICAS

REGENERATIVA

destrucción o pérdida excesiva de eritrocitos

HEMORRAGIAS

HEMOLISIS

AGUDAS CRONICAS

EXTRACORPUSCULAR INTRACORPUSCULAR adquiridas hereditarias Adquirida Intracorpuscular Anticuerpos HPN Enzimopatías **Drogas** Hemoparásitos Hemoglobinopatías Quemaduras Sustancias físicas Sustancias químicas Membranopatías Válvulas cardíacas

HEMOGLOBINA

ن Es importante el estudio de la HEMOGLOBINA?

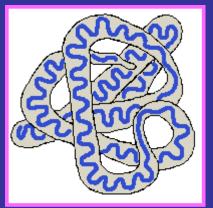
La Hb es la principal proteína del eritrocito cuya función es el transporte de oxígeno a los tejidos

Sin el adecuado aporte de oxígeno, los tejidos no pueden realizar sus funciones

Para que la Hb cumpla adecuadamente sus funciones, debe estar estructuralmente bien y en las cantidades correctas

¿Es importante el estudio de las HEMOGLOBINOPATIAS?

Existen más de 1000 variantes estructurales (desde clínica "silenciosa" hasta hemólisis severa)


La Talasemia es el defecto genético con mayor prevalencia en el mundo

Parte de las corrientes migratorias que ingresaron a nuestro país, provienen de zonas donde la β talasemia es frecuente y su investigación ayuda al conocimiento de la población en cuanto a composición étnica y corrientes migratorias

Su producto final es una estructura *cuaternaria*, con cuatro cadenas polipeptídicas en una disposición espacial específica

Estructura primaria: secuencia de 141 o 146 aa, según la cadena

Estructuras secundaria (alfa hélice) y con distorsiones específicas estructura terciaria

ONTOGENESIS: eritropoyesis

saco vitelino → hígado y bazo → médula ósea

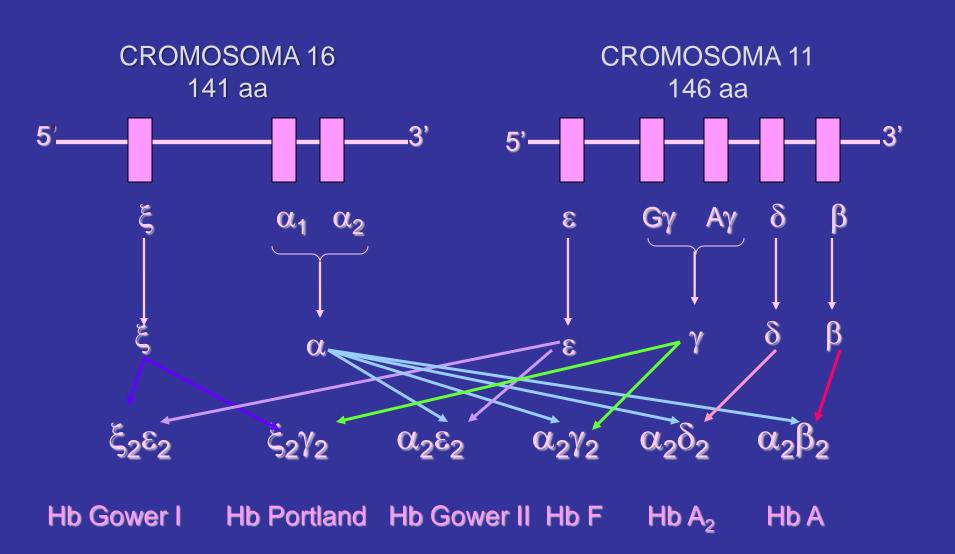
EMBRIONARIO

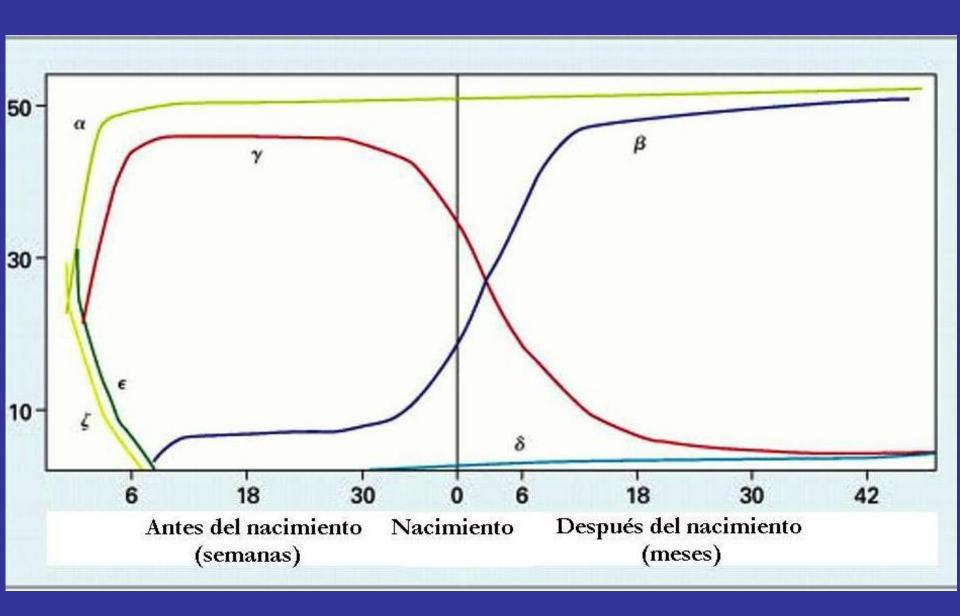
FETAL

DEL ADULTO

FENOTIPO DE LA Hb

ONTOGENESIS: respiración


Relación de cada Hb con el transporte de O₂


Etapa embrionaria: líquido instersticial

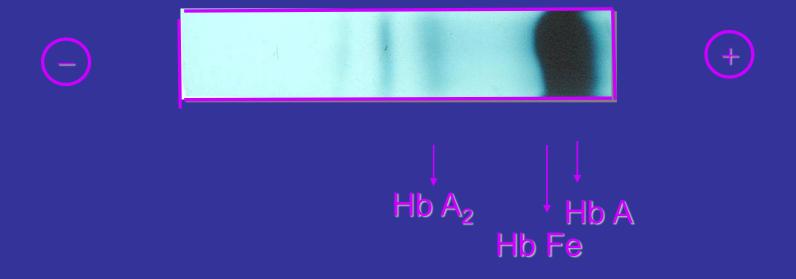
Etapa fetal: placenta

Etapa adulta: pulmones

HEMOGLOBINAS HUMANAS NORMALES

HEMOGLOBINAS NORMALES

EMBRIONARIAS


(Saco vitelino)

Gower I $(\zeta_2 \varepsilon_2)$ 42 % Gower II $(\alpha_2 \varepsilon_2)$ 24 % Portland $(\zeta_2 \gamma_2)$ 21 %

	adultos	recién nacido (at)
Hb A (α ₂ β ₂)	> 97,0 %	< 30 %
Hb A_2 ($\alpha_2\delta_2$)	1,6 – 3,0 %	trazas
Hb Fetal(α ₂ γ ₂)	< 1,0 % γ ¹³⁶ G o A (2/3)	> 70 % γ ¹³⁶ G _o A (3/1)

ELECTROFORESIS DE Hb

acetato de celulosa, pH 8,6

HEMOGLOBINA FETAL

Descubierta por Kober 1864 (alcalino resistente)

Distribución

heterogénea

en Células F

Células F

0,5-7,0 %

de los eritrocitos

HEMOGLOBINA FETAL

Aumento:

Hematológicas hereditarias Trastornos no hematológicos

Condiciones fisiológicas

Hematológicas adquiridas Recuperación hipoplasia medular

Drogas

HEMOGLOBINA A₂

Aumento

- Anemia megaloblástica
- Algunas Hb inestables
- Post transplante de médula ósea
- β Talasemia menor

Disminución

- α Talasemia (enfermedad HbH)
- βδ talasemia
- PHHF
- Anemia aplásica
- Deficiencia de hierro

FRACCIONES DE HEMOGLOBINA

Electroforesis HPLC Cromatografía **Hb Fetal** Hb A₂

Colorimetría: resistencia ácida/alcalina

Electroforesis:ácida/alcalina

Citoquímica: Kleinhauer

Cromatografía de intercambio iónico

Inmunodifusión radial

Las alteraciones de la hemoglobina constituyen un grupo de desórdenes autosómicos recesivos caracterizados por:

Síntesis reducida de una o más cadenas de globina

Síntesis de una cadena de globina estructuralmente anormal

Ambos fenotipos (síntesis reducida de una variante de hemoglobina)

TALASEMIA GENERALIDADES

Del griego: mar (thalassa) y sangre (aima)

Relacionada con la resistencia a la malaria

DEFINICION

Los síndromes talasémicos son:

- trastornos hereditarios de la molécula de la hemoglobina,
- caracterizados por deficiencias variables en la producción de alguna de las cadenas que la forman,
- con alteración de la proporción de las hemoglobinas normales

CLASIFICACIONES

CLINICA

Según la severidad clínica (silente a mayor)

<u>GENETICA</u>

Según la cadena afectada ($\alpha\beta\delta\gamma$) y nivel de síntesis (0,+)

MOLECULAR

Según la mutación $(\alpha^{-3.7}, \beta^{39C \rightarrow T})$

MICROCITOSIS HIPOCROMIA

EXCESO DE Fe

PRECIPITACION CADENAS

CONSECUENCIAS

ERITROCITOSIS

HEMOLISIS

ERITROPOYESIS INEFICAZ

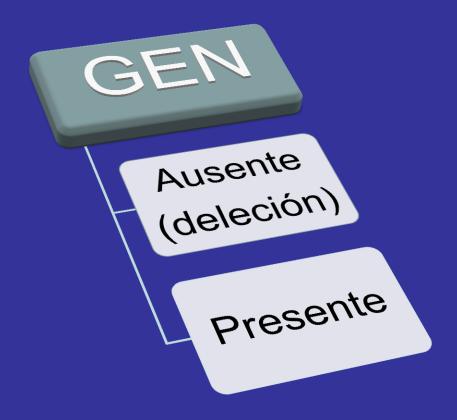
BASES MOLECULARES

Gen: 3 exones + 2 intrones

Secuencias conservadas:

- región promotora
- •secuencias de consenso para el empalme
- región de poliadenilación

ADN


↓ Transcripción

mARN

↓ Traducción

Secuencia de aminoácidos
(cadena de globina)

BASES MOLECULARES

GEN: AUSENTE

Transcripción: ausente

Mutación: deleción total o parcial del gen

Efecto:

No hay síntesis de la correspondiente cadena No hay síntesis de la correspondiente cadena, pero hay expresión de otros genes del mismo bloque

Ejemplos: α^0 α^+ talasemia $(\delta\beta)^0$ talasemia PHHF (clásica)

GEN: PRESENTE

Transcripción: anormal

Mutación: en región promotora

en empalme

en poliadenilación

en regiones distantes del gen

Efecto: transcripción reducida

empalme ausente o reducido

transcripción reducida

transcripción reducida

Ejemplos: β + talasemia

 β^+ , β^0 talasemia

 α^+ , β^+ talasemia

β+ talasemia

GEN: PRESENTE

<u>Transcripción</u>: normal→ ARNm *anormal (traducción anormal)*

Mutación: en codon de inicio de traducción aparición de codon de terminación prematura en codon de terminación en gen estructural ---variante muy inestable

Efecto: no hay síntesis de la cadena síntesis de cadenas cortas síntesis de cadenas largas

síntesis de cadenas inestables

Ejemplos: α⁰ talasemia
β⁰ talasemia
Hb Constant Spring, Hb Icara
Hb Indianápolis, Hb Quong Tze

BASES MOLECULARES

$$\alpha$$
 0 α + talasemia

 β + talasemia

m ARN

 β^0 talasemia

Secuencia de aminoácidos (cadena de globina)

mutaciones

 Mayormente deleciones grandes (> 1kb)

frecuencia

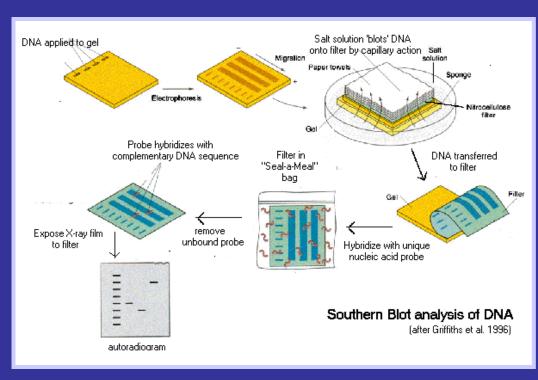
$$\bullet > (-\alpha)$$


notación

- tamaño (- -)^{5,2}
- tipo (- -)SEA

grupos étnicos

- Mediterráneo (MED)
- Sudeste asiático (SEA)
- - 3,7 (malaria)


MUTACIONES β MÁS FRECUENTES EN EL MEDITERRÁNEO

DIAGNOSTICO MOLECULAR

DELECIONES

Southern Blot

Southern blot: método usado en biología molecular para detectar secuencias específicas de ADN. Util para grandes deleciones, rearreglos y mutaciones nuevas

Gap PCR

DIAGNOSTICO MOLECULAR

MUTACIONES PUNTUALES

- •ARMS (SMRA: amplification refractory mutation system) sistema de mutación refractario a la amplificación
- Formación de heteroduplex
- ·Análisis de enzimas de restricción
- Dot-blot
- Dot-blot reverso
- DGGE (electroforesis en gel en gradientes de desnaturalización)
- Secuenciación del ADN
- ·Análisis de oligonucleótidos por microarreglos (DNA chip)

La llave para identificar las mutaciones de los genes de globina en individuos afectados y portadores

es el conocimiento de las relaciones genotipo/fenotipo

de las diferentes mutaciones,

y los efectos de interacción cuando se hereda

más de una mutación

α TALASEMIA

PORTADOR SILENCIOSO

Asintomática $\alpha\alpha$ / - α

TALASEMIA MENOR

ENFERMEDAD POR Hb H

Anemia hemolítica crónica Eritroblastos

 $--/-\alpha$

HIDROPESIA FETAL

Anemia hemolítica severa Muerte fetal o neonatal - - / - -

β TALASEMIA

TALASEMIA MINIMA

Asintomática β silente / β

TALASEMIA MENOR

Anemia leve o nula microcitosis-hipocromía $\frac{\beta^{+}}{\beta} = \frac{\beta^{-0}}{\beta}$

TALASEMIA INTERMEDIA

Expresión menos severa que la mayor $\beta + /\beta + \beta + (\delta \beta)^0$

TALASEMIA MAYOR

Anemia muy intensa ADE elevado Policromatofilia β^{0}/β^{0} β^{0}/β +

LABORATORIO

¿Cómo podemos, desde el Laboratorio,

evaluar una TALASEMIA?

GENERALES

hemograma (índices, ADE, morfología) reticulocitos metabolismo del hierro

ESPECIFICAS

fracciones de la Hb

CONFIRMATORIAS

biología molecular

COMPLEMENTARIAS

parámetros de hemólisis (LDH, bili, Hp) resistencia globular osmótica estrés oxidativo

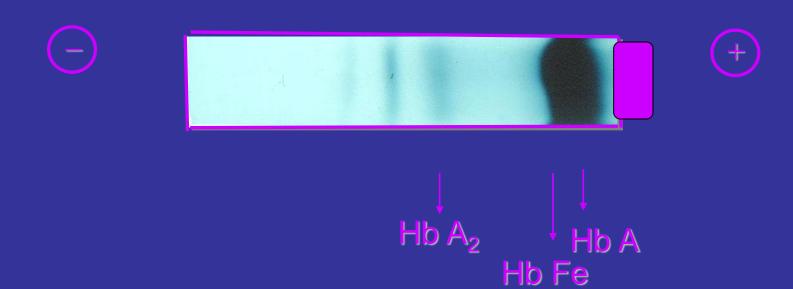
α TALASEMIA

RBC x10 ¹² /L Hb g/dL Hto % VCM fL HCM pg CHCM g/dL ADE #	4,52	5,19	4,77
	11,6	10,1	8,7
	36,6	36,4	30,0
	81,1	70,3	62,9
	25,6	19,4	18,2
	31,6	27,7	29,0
	14,2	14,3	33,5
ADE fL	40,2	37,5	63,1

HbA %	96,0	97,8	92,3	
HbA ₂ %	2,9	1,6	1,1	
Hb fetal %	1,1	0,6	2,6	
Hb H			4,0	

CUERPOS DE INCLUSION

Se producen por precipitación de β_4 en los eritrocitos


Pacientes portadores α o con α talasemia menor: en 1/1000-1/10000 eritrocitos

En la enfermedad por Hb H: en casi el 100 % de los eritrocitos

ELECTROFORESIS DE Hb pH alcalino

αTalasemia portador silencioso o αTalasemia menor

αTalasemia: Hb H Hb Bart's

β TALASEMIA

GENOTIPO	Hb A	Hb A2	Hb fetal	Otras Hbs
Normal β/β	97	2,5-3,2	<1	Ninguna
Talasemia mayor β°/β° β*/β*, Mediterráneo β°/β* (δβ) ^{Lepore} /(δβ) ^{Lepore}	0 Presente Presente 0	1-5,9 2,4-8,7 0,6-3,4 0	>94 20-90 >75 70-92	Cadenas α libres Cadenas α libres Ninguna Hb Lepore (8-30%)
Talasemia intermedia β */ β * en negros β 9/($\delta\beta$)° β 9/ β 0/($\delta\beta$)° β 9/ β 0/($\delta\beta$)°/($\delta\beta$)° $\delta\beta$ 9/ $\delta\beta$ 0 $\delta\beta$ 9/($\delta\beta$)°/($\delta\beta$)° $\delta\beta$ 9/ $\delta\beta$ 0 $\delta\beta$ 9/($\delta\beta$)°/($\delta\beta$)° $\delta\beta$ 9/ $\delta\beta$ 0 $\delta\beta$ 9/ δ 0 $\delta\beta$ 9/($\delta\beta$)° $\delta\beta$ 9/ δ 9/($\delta\beta$ 9)° δ 9/ δ 9/(δ 9/ δ 9	Presente 0 20-30 0 Presente Presente 0 0 Presente	5,4-10 0,3-2,4 Disminuida Disminuida Disminuida >3,2 0 0 0 Aumentada	30-73 60-99 Aumentada Aumentada Aumentada 1,5-12 100 92 Normal o	Ninguna Ninguna Ninguna Hb Lepore (10%) Hb Lepore (10%) Ninguna Ninguna Hb Lepore (8%) ± Hb H
Talasemia menor β*/β β°/β (δβ)°/β (δβ) ^{Lepore} /β (γδβ)°/β	>90 >90 <90 Presente Presente	3,5-8 3,5-8 2,5-3 1,2-2,6 2,5-3,2	1-2 1-2 5-20 1-3 <1-2	Ninguna Ninguna Ninguna Hb Lepore (5-15%) Ninguna
Talasemia mínima β ^{sitente} /β	97	<3,2	<1	Ninguna

CLÍNICA Y LABORATORIO DE LOS SÍNDROMES β TALASÉMICOS

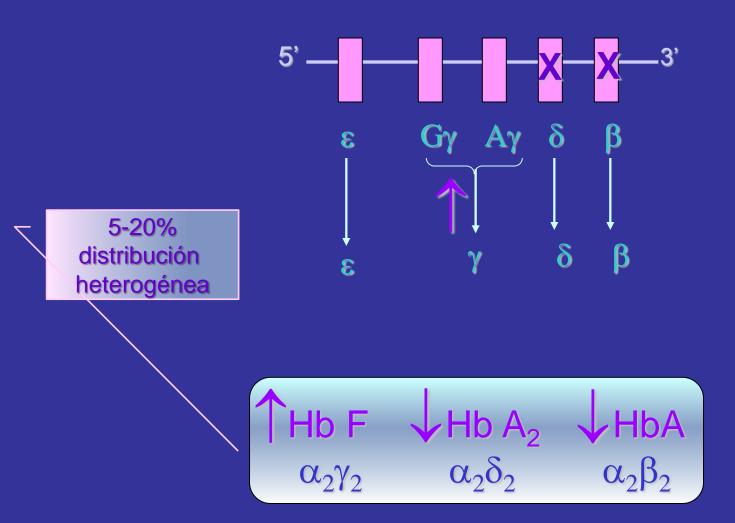
	Mayor	Intermedia	Menor	Mínima	
Gravedad	++++	++	+,	, O	
Esplenomegal	lia ++++	++, +++	+, 0	0	
Ictericia	+++	++, +	0	0	
Compromiso esquelético	++++, ++	+, 0	+, 0	0	
Anemia (Hb-g/d	L) < 7	7 – 10	> 10	Normal	
Hipocromía	++++	+++	++	+	
Microcitosis	+++	++	+	0	
Target cell	10 – 35 %	++	+		
P. basófilo	++	+	+	0, +	
Reticulocitos (%) 5 – 15	3 – 10	2 – 5	1 – 2	
Eritroblastos	+++	+, 0	0	0	

FRACCIONES DE HEMOGLOBINA

FENOTIPO	Hb A (%)	Hb A ₂ (%)	Hb Fe (%)
Normal	≥ 97	1,6 – 3	≤ 1
β Tal Mayor	0 o +	No↑	$\uparrow \uparrow \uparrow$
β Tal Menor	> 90	3,5–5,7	≤ 5

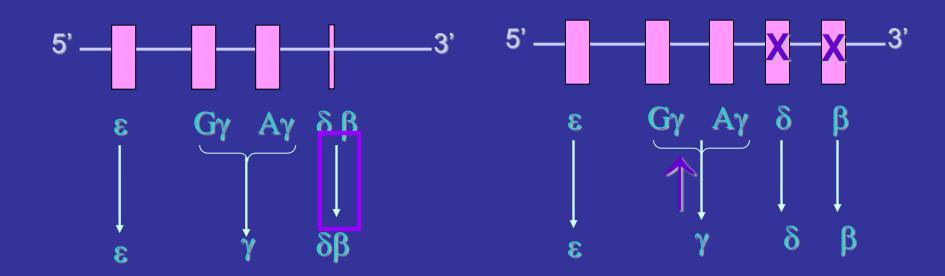
β TAL MAYOR β TAL MENOR

RBC x10 ¹² /L	3,55	5,71
Hb g/dL	8,1	10,8
Hto %	25,5	35,8
VCM fL	71,8	62,7
HCM pg	22,5	18,9
CHCM g/dL	31,8	30,2
ADE %	32,6	16,8
Reticulocitos x10%L	177,2	43,1
Eritroblastos %	7	0


HbA %	25,4	94,5
HbA ₂ %	3,5	4,3
Hb fetal %	71,1	1,2

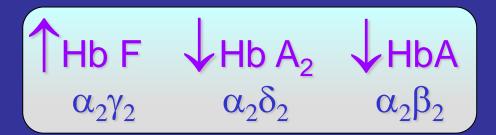
OTROS SINDROMES β TALASEMICOS MENORES

CROMOSOMA 11


146 aminoácidos

βδ talasemia menor

CROMOSOMA 11


146 aminoácidos

Hemoglobinopatía talasémica

βδ talasemia heterocigota

Hb Lepore

RBC x10 ¹² /L	5,85	6,15
Hb g/dL	11,6	12,8
Hto %	40,1	41,0
VCM fL	68,5	66,7
HCM pg	19,8	20,8
CHCM g/dL	29,8	31,2

Morfología eritrocitaria: el mismo perfil que la β talasemia menor heterocigota

HbA %	93,4	85,3
HbA ₂ %	1,8	2,7
Hb fetal %	4,8	5,0
Hb Lepore		7,0

OTROS METODOS ELECTROFORETICOS

Medio alcalino acetato de celulosa

Medio alcalino agar

Medio alcalino capilar

Medio ácido agar

Los métodos electroforéticos en medio alcalino tienen el mismo alcance

Cada uno tiene diferente sensibilidad y/o exactitud

Cada laboratorio debe adoptar el método de acuerdo a la disponibilidad tecnológica o de capacitación profesional

La electroforesis en medio ácido no da mayores aportes en casos de talasemias "puras"

CUANTIFICACION DE Hb A₂

Cuantificación HbA₂

*Pueden eluirse algunas Hbs anómalas por eso la importancia de realizar también la electroforesis

Electroforesis

Cromatografía

Adsorción en soporte, intercambiador de iones

Adsorción de las Hb es diferente

HbA₂ se eluye *

PRUEBAS CONFIRMATORIAS

ESTUDIO DEL ADN EN LA TALASEMIA

PRUEBAS COMPLEMENTARIAS

PARAMETROS DE HEMOLISIS

- de normales a incrementados
- (de talasemia menor a mayor, respectivamente)

RESISTENCIA GLOBULAR OSMOTICA

Incrementada

ESTRÉS OXIDATIVO

- Alteración perfil lipoproteico
- y de marcadores de estrés oxidativo

EXPERIENCIAS

α Talasemia

Tipos: deleciones o no deleciones Hay, al menos, 40 deleciones diferentes

El tamaño de la deleción es importante y afecta el fenotipo clínico de la hidropesía fetal

Las deleciones comunes de α-talasemia permiten la producción de los genes embrionarios tempranamente en la gestación

Las grandes deleciones no permiten "el beneficio" de las hemoglobinas embrionarias. Son severas

αTalasemia

Mutaciones no delecionales pueden tener un fenotipo más severo

La mutación no delecional más común es la Hb Constant Spring. Consta de 31 aminoácidos "alargando" la cadena α. Es inestable y más lenta

αTalasemia. Experiencia en los primeros casos

	RBC	Hb	VCM	HCM	ADE _{CV}	ADE _{DE}
	x10 ¹² /L	d/dl	Fl	pg	%	fl
Media	5,45	12,2	72,7	22,5	14,2	37,7
Rango	4,52-6,35	10,1-14,3	67,4-81,1	19,4-25,6	13,0-14,9	36,0-40,4

VCM y HCM fueron menores en pacientes con deleción en dos genes α

	HbA2	Hb fetal
	%	%
Media	2,2	1,0
Rango	1,5-2,9	0,5-2,0

Mutación	α ^{SEA}	$-\alpha^{3.7}$	$-\alpha^{3.7}$	$lpha^{\sf Hph}$
	heterocigoto	heterocigoto	homocigoto	heterocigoto
n	4	2	1	1

Prevalencia de β talasemia menor

Estudios de Hb: 1936----Sin alteraciones: 1347*

 β Tal <: 518 (27%, 87,9%); β Tal >: 5; $\beta\delta$ Tal<: 2;

βαTal:5; Lepore: 5; síndromes HbS: 38;

síndromes HbC: 9; otras (D, J, Inestables): 7

* portadores silenciosos αTal, ↓ Fe, pacientes que presentaron síntomas semejantes a heterocigotas o estudios familiares

β talasemia

Venezuela:

Mutaciones más frecuentes:

Los datos demuestran que la mayor parte de los alelos β-thal en Venezuela son de origen Mediterráneo y africano

β talasemia

Arabia Saudita (oeste)

De un total de 23 mutaciones, siete fueron las más comunes (78 % de los pacientes):

```
IVS-II-1 (G>A)
IVS-I-110 (G>A)
IVS-I-5 (G>C)
codon 39 (C>T)
codon 26 (G>A)[Hb E or β26(B8)Glu→Lys, GAG>AAG]
frameshift codons (FSC) 8/9 (+G)
IVS-I-1 (G>A)
```

Consideran que el uso de PCR-ARMS es útil para el screening de mutaciones β-thal

GENOTIPO/FENOTIPO

Perfil	hemato	osipolo

CD 39 (X+DE) IVS 1:110 (X+DE)

RBC (x10¹²/L)

Hb (g/dL)

Hto (%)

VCM (fL)

Hb A₂ (%)

Hb Fetal (%)

Morfología

TALASEMIA HETEROCIGOTA VS ANEMIA FERROPENICA

2.000 millones de personas anémicas en el mundo (50% por carencia de hierro)

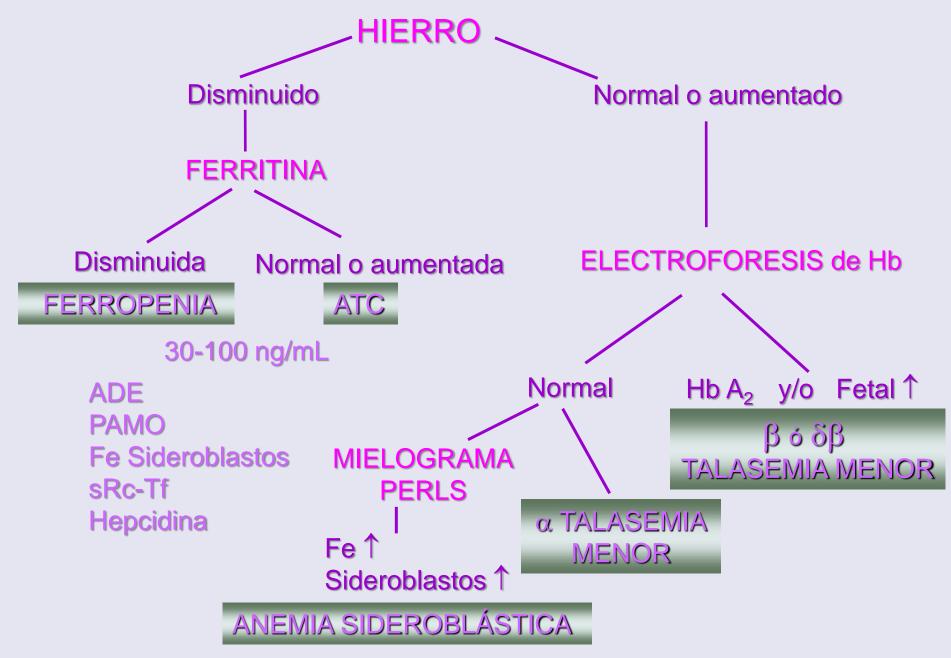
VCM

microcíticas

ferropenia

talasemia menor

Desorden genético más común del mundo


PARAMETRO	ANEMIA FERROPENICA	TAL β α MENOR
VCM	↓ ↓	\
ADE	$\uparrow\uparrow\uparrow$	lig ↑
HCM	+++	+++
FERREMIA	111	No↑
SATURACION	†††	N
FERRITINA	111	No↑
Rc-Tf	$\uparrow\uparrow\uparrow$	↑
Hb A ₂	\	↑↑ N

Algoritmo aplicable ante VCM disminuidos

Talasemias: sólo heterocigotas

Deficiencia de hierro: sólo en el estadío

manifiesto de anemia

Algoritmo aplicable ante VCM disminuidos:

CONCLUSIONES

La anemia microcítica hipocrómica, producto de la alteración de la hemoglobinogénesis, es la más prevalente en el mundo

La talasemia,
desorden genético más común del mundo,
es consecuencia de la deficiencia
de por lo menos una cadena de globina

Si bien los estudios de alta complejidad como la biología molecular nos permiten llegar a la identificación de la hemoglobina, desde el Laboratorio podemos realizar estudios que nos permiten caracterizar la mayoría de

las alteraciones de las hemoglobinas

HJb \

Posición porcentaje

La hematimetría y la morfología son importantes en el estudio de las talasemias

El análisis de la electroforesis de hemoglobina en medio alcalino es la prueba inicial para la identificación del perfil de la hemoglobina

Desde el laboratorio podemos definir el fenotipo que contribuirá a la investigación del genotipo

VCM y HCM ↓:

estudiar metabolismo del hierro

Ferremia y ferritina 🕽:

considerar ferropenia

Ferremia y ferritina N:

electroforesis de Hb y Hb fetal

HbA₂ ↑: considerar β tal

Hb A_2 N y Hb fetal \uparrow : considerar $\delta\beta$ tal

Hb intermedia A-A _{2:} 7-15 %: considerar Lepore

HbA₂ en el lím inferior ó ↓ y Hb fetal < 2%: considerar α tal

Realizar biología molecular y recomendar estudio familiar

 O_2

O 2

 O_2

MUCHAS GRACIAS 2

0 2

 O_2

O

